BAM 2016

Mine Design in an Uncertain World

Mining Life Cycle

- Over the mining life cycle ratio of strategic to tactical planning decreases
- Whilst, cumulative business value improves over time with a decrease in the variability of business value

Open Pit Mine Design Process

(Integrated Optimisation)

What does the model do?

- Maximise Net Present Value (NPV)
- Selects optimal system configuration
- Sequences and schedules material flow

Network Layout

Objective Function

• Maximise the discounted

Revenue from saleable product – Variable cost of mining/processing – Fixed operating cost of design option – Capital Cost of Design Option – Disposal cost of design option

Production Constraints	Resource C	Constraints
$\sum_{f,t=1}^{F,T} X_{p,b,f,t,n} \le R_{p,b}$	for $\forall p, b, n$	1
$\sum_{\substack{\mathbf{b} \ \mathbf{f} = 1 \ tt = 1}}^{\mathbf{B}_{p}, \mathbf{F}, t} X_{p, b, \mathbf{f}, \text{tt}, \mathbf{n}} \ge R_{p} Y_{p, t, n}$	for $\forall p, t, n$	2
$\sum_{b,f,tt=1}^{B_{p},F,t} X_{p',b,f,tt,n} \le R_{p',n} Y_{p,t,n}$	for $\forall p, t, n$	3
$Y_{p,t-1} \le Y_{p,t,n}$	for $\forall p, t, n$	4
$Y_{p p\in PIT,t,n} \le SR_t$	for \forall <i>PIT</i> , <i>t</i> , <i>n</i>	5
$\frac{1}{R_{p,b}} \sum_{f=1}^{F} X_{p,b,f,t,n} - \frac{1}{R_p} \sum_{b,f=1}^{B_{p,F}} X_{p,b,f,t,n} \le \gamma\%$	for $\forall p, b, t, n$	6
$\frac{1}{R_p} \sum_{b,f=1}^{B_p,F} X_{p,b,f,t,n} - \frac{1}{R_{p,b}} \sum_{f=1}^F X_{p,b,f,t,n} \le \gamma\%$	for $\forall p, b, t, n$	7

Production Constraints

$\sum_{f,t=1}^{\mathrm{F},\mathrm{T}} X_{p,b,\mathrm{f},t,n} \leq R_{p,b}$	for $\forall p, b, n$	1
$\sum_{b,f=1,tt=1}^{B_p,F,t} X_{p,b,f,tt,n} \ge R_p Y_{p,t,n}$	for $\forall p, t, n$	2
$\sum_{b,f,tt=1}^{B_{p},F,t} X_{p',b,f,tt,n} \le R_{p',n} Y_{p,t,n}$ Sequencing Constraints	for $\forall p, t, n$	3
$Y_{p,t-1} \le Y_{p,t,n}$	for $\forall p, t, n$	4
$Y_{p p\in PIT,t,n} \le SR_t$	for $\forall PIT, t, n$	5
$\frac{1}{R_{p,b}} \sum_{f=1}^{F} X_{p,b,f,t,n} - \frac{1}{R_p} \sum_{b,f=1}^{B_{p,F}} X_{p,b,f,t,n} \le \gamma\%$	for $\forall p, b, t, n$	6
$\frac{1}{R_p} \sum_{b,f=1}^{B_p,F} X_{p,b,f,t,n} - \frac{1}{R_{p,b}} \sum_{f=1}^F X_{p,b,f,t,n} \le \gamma\%$	for $\forall p, b, t, n$	7

Production Constraints

$\sum_{f,t=1}^{F,T} X_{p,b,f,t,n} \le R_{p,b}$	for $\forall p, b, n$	1
$\sum_{\mathbf{b},\mathbf{f}=1,tt=1}^{\mathbf{B}_{p},\mathbf{F},t} X_{p,b,\mathbf{f},t\mathbf{t},\mathbf{n}} \ge R_{p}Y_{p,t,n}$	for $\forall p, t, n$	2
$\sum_{b,f,tt=1}^{B_{p},F,t} X_{p',b,f,tt,n} \leq R_{p',n} Y_{p,t,n}$	for $\forall p, t, n$	3
$Y_{p,t-1} \le Y_{p,t,n}$	for $\forall p, t, n$	4
$Y_{p p\in PIT,t,n} \le SR_t$	for $\forall PIT, t, n$	5
$\frac{1}{R_{p,b}} \sum_{f=1}^{F} X_{p,b,f,t,n} - \frac{1}{R_p} \sum_{b,f=1}^{B_{p,F}} X_{p,b,f,t,n} \le \gamma\%$	for $\forall p, b, t, n$	6
$\frac{1}{R_p} \sum_{b,f=1}^{B_p,F} X_{p,b,f,t,n} - \frac{1}{R_{p,b}} \sum_{f=1}^F X_{p,b,f,t,n} \le \gamma\%$	for $\forall p, b, t, n$	7

Design Option Constraints	Capacity Constraint	
$\sum_{p,B_p,F} X + c_1 \leq C + Y$	for $\forall o \in PRE, t, n$	8
$\sum_{p,b,f=1 f\in o} A_{p,b,f,t,n} \leq C_{o,t,n} I_{o,t}$		
$\sum_{n, h, f=1 f \in Q}^{P, B_{p,F}} X_{p,b,f,t,n} + \sum_{s, i, f=1 f \in Q}^{S,I,F} X_{s,i,f,t,n} \leq C_{o,t,n} Y_{o,t}$	for $\forall o \in POST, t, n$	9
$\sum_{p,b,f=1 f\in c,o}^{P,B_p,F} X_{p,b,f,t,n} + \sum_{s,i,f=1 f\in c,o}^{S,I,F} X_{s,i,f,t,n} \leq C_{c,o,t,n} Y_{o,t}$	for \forall c, $o \in POST$, t, n	10
$FC_{o,t,n}Y_{o,t} - FC_{o,t,n}Y_{o,t-1} \leq E_{o,t,n}$	for $\forall o, t, n$	11
$FD_{o,t,n}Y_{o,t} - FD_{o,t,n}Y_{o,t-1} \leq D_{o,t,n}$	for $\forall o, t, n$	12
$Y_{o',t} \le Y_{o,t-1}$	for $\forall o, t$	13

Design Option Constraints

Design Option Constraints

$$\begin{split} & \sum_{p,b,f=1|f\in o}^{P,B_p,F} X_{p,b,f,t,n} \leq C_{o,t,n}Y_{o,t} & \text{for } \forall \ o \in PRE, t, n & 8 \\ & \sum_{p,b,f=1|f\in o}^{P,B_p,F} X_{p,b,f,t,n} + \sum_{s,i,f=1|f\in o}^{S,I,F} X_{s,i,f,t,n} \leq C_{o,t,n}Y_{o,t} & \text{for } \forall \ o \in POST, t, n & 9 \\ & \sum_{p,b,f=1|f\in c,o}^{P,B_p,F} X_{p,b,f,t,n} + \sum_{s,i,f=1|f\in c,o}^{S,I,F} X_{s,i,f,t,n} \leq C_{c,o,t,n}Y_{o,t} & \text{for } \forall \ c, \ o \in POST, t, n & 10 \\ & \sum_{p,b,f=1|f\in c,o}^{P,B_p,F} X_{p,b,f,t,n} + \sum_{s,i,f=1|f\in c,o}^{S,I,F} X_{s,i,f,t,n} \leq C_{c,o,t,n}Y_{o,t} & \text{for } \forall \ o, \ t, n & 11 \\ & FC_{o,t,n}Y_{o,t} - FC_{o,t,n}Y_{o,t-1} \leq E_{o,t,n} & \text{for } \forall \ o, \ t, n & 12 \\ & FD_{o,t,n}Y_{o,t} - FD_{o,t,n}Y_{o,t-1} \leq D_{o,t,n} & \text{for } \forall \ o, \ t, n & 12 \\ & Y_{o',t} \leq Y_{o,t-1} & \text{for } \forall \ o, \ t & 13 \end{split}$$

S	tockpile Out	<= In	
Stockpiling Constraints			
$\sum_{f,tt=1 s,i\in f}^{F,t-1} X_{s,i,f,tt,n} \le \sum_{p,b,f,tt=1 s,i\in f}^{P,B_p,F,t} X_{p,b,f,tt,n}$	for∀ s,i,t,n		14
$\sum_{p,b,f,tt=1 s,i\in f}^{P,B_p,F,t} X_{p,b,f,tt,n} - \sum_{f,tt=1 s,i\in f}^{F,t} X_{s,i,f,tt,n} \le C_{s,t}$	for ∀ s, i, t, n		15
Product Constraints			
$\sum_{p,b,f=1 v,d\in f}^{P,B_{p},F} REC_{v,d,p,b,n}X_{p,b,f,t,n} + \sum_{s,i,f=1 v,d\in f}^{S,I,F} REC_{v,d,s,i}X_{s,i,f,t,n} \leq C_{v,d}$	for $\forall v, d, t, n$	16	
$\sum_{p,b,f=1 v,d\in f}^{P,B_{p},F} GL_{g,v,d}X_{p,b,f,t,n} + \sum_{s,i,f=1 v,d\in f}^{S,I,F} GL_{g,v,d}X_{s,i,f,t,n}$	for $\forall g, v, d, t, n$	17	
$\leq \sum_{p,b,f=1 v,d\in f}^{P,B_{p},F} G_{g,p,b,f,t,n} X_{p,b,f,t,n} + \sum_{s,i,f=1 v,d\in f}^{S,I,F} G_{g,s,i,f,n} X_{s,i,f,t,n}$			
$\sum_{p,b,f=1 v,d\in f}^{P,B_{p},F} GU_{g,v}X_{p,b,f,t,n} + \sum_{s,i,f=1 v,d\in f}^{S,I,F} GU_{g,v}X_{s,i,f,t,n}$	for $\forall g, v, d, t, n$	18	
$\geq \sum_{p,b,f=1 v,d\in f}^{P,B_{p},F} G_{g,p,b,f,t,n} X_{p,b,f,t,n} + \sum_{s,i,f=1 v,d\in f}^{S,I,F} G_{g,s,i,f,n} X_{s,i,f,t,n}$			

Stockpiling Constraint	S Stockpile Capacity Limit]
$\sum_{f,tt=1 s,i\in f}^{F,t-1} X_{s,i,f,tt,n} \leq \sum_{p,b,f,tt=1 s,i\in f}^{P,B_p,F,t} X_{p,b,f,tt,n}$	for ∀ s, i, t, n	14
$\sum_{p,b,f,tt=1 s,i\in f}^{P,\mathrm{B}_{p},F,t} X_{p,b,f,tt,n} - \sum_{f,tt=1 s,i\in f}^{F,t} X_{s,i,f,tt,n} \leq C_{s,t}$	for $\forall s, i, t, n$	15

Product Constraints

$$\sum_{p,b,f=1|v,d\in f}^{P,B_{p},F} REC_{v,d,p,b,n}X_{p,b,f,t,n} + \sum_{s,i,f=1|v,d\in f}^{S,I,F} REC_{v,d,s,i}X_{s,i,f,t,n} \leq C_{v,d} \quad \forall v,d,t,n$$

$$\sum_{p,b,f=1|v,d\in f}^{P,B_{p},F} GL_{g,v,d}X_{p,b,f,t,n} + \sum_{s,i,f=1|v,d\in f}^{S,I,F} GL_{g,v,d}X_{s,i,f,t,n} \quad \forall g,v,d,t,n$$

$$\leq \sum_{p,b,f=1|v,d\in f}^{P,B_{p},F} G_{g,p,b,f,t,n}X_{p,b,f,t,n} + \sum_{s,i,f=1|v,d\in f}^{S,I,F} G_{g,s,i,f,n}X_{s,i,f,t,n} \quad \forall g,v,d,t,n$$

$$\sum_{p,b,f=1|v,d\in f}^{P,B_{p},F} GU_{g,v}X_{p,b,f,t,n} + \sum_{s,i,f=1|v,d\in f}^{S,I,F} GU_{g,v}X_{s,i,f,t,n} \quad \forall g,v,d,t,n$$

$$\geq \sum_{p,b,f=1|v,d\in f}^{P,B_{p},F} G_{g,p,b,f,t,n}X_{p,b,f,t,n} + \sum_{s,i,f=1|v,d\in f}^{S,I,F} GU_{g,v}X_{s,i,f,t,n} \quad \forall g,v,d,t,n$$

$$\geq \sum_{p,b,f=1|v,d\in f}^{P,B_{p},F} G_{g,p,b,f,t,n}X_{p,b,f,t,n} + \sum_{s,i,f=1|v,d\in f}^{S,I,F} G_{g,s,i,f,n}X_{s,i,f,t,n}$$

Stockpiling Constraints

$$\sum_{f,tt=1|s,i\in f}^{F,t-1} X_{s,i,f,tt,n} \leq \sum_{p,b,f,tt=1|s,i\in f}^{P,B_p,F,t} X_{p,b,f,tt,n} \qquad \text{for } \forall s, i, t, n \qquad 14$$

$$\sum_{f,tt=1|s,i\in f}^{P,B_p,F,t} X_{p,b,f,tt,n} = \sum_{f,tt=1|s,i\in f}^{F,t} X_{s,i,f,tt,n} \leq C_{s,t} \qquad \text{for } \forall s, i, t, n \qquad 15$$

$$\frac{P,B_p,F,t}{Product Capacity Limit}$$

$$\frac{P,B_p,F}{Product Capacity Limit}$$

$$\frac{P,B_p,F}{Product Capacity Limit}$$

$$\frac{P,B_p,F}{P,B_p,F} REC_{v,d,p,b,n} X_{p,b,f,t,n} + \sum_{s,i,f=1|v,def}^{S,I,F} REC_{v,d,s,i} X_{s,i,f,t,n} \leq C_{v,d} \qquad \forall v, d, t, n \qquad 16$$

$$\sum_{p,b,f=1|v,def}^{P,B_p,F} G_{l,g,v,d} X_{p,b,f,t,n} + \sum_{s,i,f=1|v,def}^{S,I,F} G_{l,g,v,d} X_{s,i,f,t,n} \qquad \forall g, v, d, t, n \qquad 17$$

$$\leq \sum_{p,b,f=1|v,def}^{P,B_p,F} G_{l,g,v,b,f,t,n} + \sum_{s,i,f=1|v,def}^{S,I,F} G_{l,g,v,d} X_{s,i,f,t,n} \qquad \forall g, v, d, t, n \qquad 18$$

$$\geq \sum_{p,b,f=1|v,def}^{P,B_p,F} G_{g,p,b,f,t,n} X_{p,b,f,t,n} + \sum_{s,i,f=1|v,def}^{S,I,F} G_{g,s,i,f,n} X_{s,i,f,t,n} \qquad \forall g, v, d, t, n \qquad 18$$

$$\geq \sum_{p,b,f=1|v,def}^{P,B_p,F} G_{g,p,b,f,t,n} X_{p,b,f,t,n} + \sum_{s,i,f=1|v,def}^{S,I,F} G_{g,s,i,f,n} X_{s,i,f,t,n} \qquad \forall g, v, d, t, n \qquad 18$$

Stockpiling Constraints

Integer Feasibility Cuts	All Options in a flow particular must exist	ath
$Y_{o,t} - \sum_{tt=1}^{t} Y_{\hat{o},tt} \le 0$	for ∀ <i>o</i> , <i>t</i>	19
$\sum_{tt=1}^{t} Y_{p',tt,n} \leq \sum_{tt=1}^{t} Y_{p,tt,n}$	for ∀ p, t, n	20
$Y_{p,t,n} \le Y_{o,t o \in M}$	for $\forall p, o, t, n$	21

Integer Feasibility Cuts $Y_{o,t} - \sum_{tt=1}^{t} Y_{\hat{o},tt} \le 0$	Parcel Dependency (enforced on Binary as well as Linear Variable)	19
$\sum_{tt=1}^{t} Y_{p',tt,n} \leq \sum_{tt=1}^{t} Y_{p,tt,n}$	for $\forall p, t, n$	20
$Y_{p,t,n} \le Y_{o,t o \in M}$	for $\forall p, o, t, n$	21

Performance Size Reduction Algorithms

- <u>Late start</u> on execution of a <u>design option</u> due possible resource extraction being less value then the cost of the design option
- <u>Early start on a parcel</u> due to <u>possible</u> design option <u>capacity</u>
- Early start for a parcel due to a maximum sink rate
- <u>Removal</u> of flow paths with a <u>negative marginal value</u>
- <u>Aggregate</u> bins within a parcel of similar characteristics

Problem Size

Parcels - 72 / Bins - 1446499 binaries / 176,000 linearDesign Options - 856 binariesStockpiles - Bins - 151,502 linearTime Periods - 7

Model Modes...

					Time P	eriod						
	1	2	3	4	5	67	8	9	10		Advantages	Disadvantages
Scenarios	~	-	\sim	\sim	\rightarrow		\sim	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	System Configuration		
Fixed System										Fixed Input by User	Clear path forward due to fixed system configuration	System configuration will not react to change
Flexible System										Optimised for each scenario	Obtains an optimal system configuration for the simulation	Assumes perfect knowledge is available to decision makers
Robust System										Optimised for all scenarios	System configuration is designed to handle change the best	Model is large thus slow to solve
Operational System										Fixed Input by User for initial periods then Optimised for each scenario	Fixed configuration and clea pathway for initial periods with flexibility maintained in back end of the schedule	r Requires manual input of the initial fixed configuration which requires running of the other modes to determine the best configuration

Possible system configurations over time

Pit and Pushback Design

Feasibility Study

Stochastic Parameters

Conditionally Simulated Models

0.5 to 0.75 0.75 to 1 1 to 1.25 1.25 to 1.5 1.5 to 2 2 to 2.5 2.5 to 3 3 to 5 5 to 999

Fixed System

- Feasibility Configuration
 - Mining 18 Mtpa
 - Plant 2 Mtpa
- Optimised Schedule

 Feasibility System Configuration with variability from uncertainty

ENPV - \$556M

•

Project Value at Risk Graph 100% --- Fixed System WITH Geological Uncertainty eNPV - Fixed System WITH Geological Uncertainty (\$556.51M) - -90% Deterministic Value for Feasibility (\$447.79M) 80% 70% Probability of Achieving NPV (%) 60% 50% 40% 30% 20% 10% 0% -200.0 0.0 200.0 400.0 600.0 800.0 1,000.0 1,200.0 Net Present Value (\$M)

Options

Flexible System

- Flexible system configuration generates optimal configuration for each period
- Mining 8Mtpa has FoE higher than 100% as it executes multiple times in some cases
- Recommends:
 - Mining 18Mtpa (p1-7)
 - Mining Expansion (p5-7)
 - Plant 3Mtpa (p2-p7)

- Flexible System Configuration value distribution
- ENPV \$1142M

Flexible System for Deterministic

 Include Design Options in optimisation process to determine System Configuration simultaneously with mine schedule

- With the proposed 'fixed' system configuration determine distribution of value by examining performance under uncertainty
- Significant increase in ENPV to \$1067M compared to feasibility of \$556M

Robust System

Robust System

Operational System

Net Present Value (\$M)

Summary

Name	Expected Project Value (\$M)
Feasibility Study	447
Feasibility Sched	556
Fixed System	1067
Robust System	1074
Operational System	1096
Flexible system	1142

- Fully <u>Flexible</u> system configuration is unrealistic as it assume <u>perfect</u> <u>information</u>
- <u>Operational</u> system configuration is the <u>best</u> due to inclusion of flexibility in later year

Take Away's

- Significant Increase in Expected Project Value by <u>including Design</u> <u>Options</u> in the optimisation process and simultaneously optimising
- <u>Inclusion of Uncertainty</u> in analysis process justifies including flexibility in the design