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Why we should persevere with a MIP approach to 
optimisation problems

3

§ You get a bound on solution quality
§ It makes you think about modelling the problem
§ Someone else is dedicated to making your problem run faster
§ Many ways to make MIPs faster
§ Many MIP based heuristics.

1) BAM 2014
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Someone else is dedicated to making your problem run 
faster
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1) Gurobi’s Benchmark.pdf
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Many ways to make MIP faster
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§ Better modelling
§ Lagrangian Relaxation
§ Branch and Price
§ Branch, Price and Cut

§ Lazy Constraints
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Branch and Price
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§ Reformulate the problem using some form of “composite” variable.  
§ At any LP relaxation, attempt to find variables which will improve the 

relaxation. 
§ Whenever we can’t find any, and the solution is not integer, branch (or cut).

1) Branch-and-Price: Column Generation for Solving Huge Integer Programs: Barnhart, Johnson, Nemhauser, Savelsbergh and Vance, 1996
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Branch and Price
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PROS

• Often a tighter LP relaxation

• Often reduced symmetry

• Separation into master and sub 
problems:

• additional non-linear constraints in the sub-
problem.

• Sometimes it’s the only way to solve 
the problem.

CONS

• Limited models where it is useful.

• Slow convergence of master 
problem.

• Tricks required for dual variable 
stabilisation.

• Not (yet) directly supported by 
modern IP solvers.



Cuts
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§ MIP Solvers use Branch and Cut
§ Mysterious (proprietary) pre-processing phase first

§ Solve LP relaxation
§ If not integer feasible, try to add a cut:
§ An equality satisfied by any feasible integer solution but not satisfied by the current 

relaxed solution
§ If it is too much work/not useful enough to find a cut, then branch
§ “Users” (i.e. the modeller) can also add cuts on the fly

1) Outline of an algorithm for integer solutions to linear programs.  Gomory (1958)
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Lazy Constraints
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§ Inequalities that cut off integer solutions
§ Idea has existed for many years – e.g. Concorde TSP solver
§ Often referred to as Branch and Cut (somewhat confusingly)
§ Direct support by MIP packages has opened up many more options
§ Gurobi 5.0, May 2012
§ CPLEX?

1) Concorde Solver
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TSP with Lazy Constraints
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Lazy Constraints
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PROS

• Sometimes the only way to model 
the problem

• Much smaller models = much faster 
solve times

• Optimistically assume constraints will be 
satisfied, add when not.  

• Optimistically estimate some component of the 
objective function and add constraints to 
improve our estimate.

• All the advantages of being 
embedded in a modern IP solver

• multi-threading, heuristics, cuts, pre-solve, etc.

CONS

• Limited models where it is useful

• Can require too many lazy 
constraints



Sometimes the only way to model the problem
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§ Pieces of 8
§ xijk= 1 if square (i,j) is type k
§ Each square is used once
§ Squares of type 0 have exactly 2 neighbours

of type 0 (except origin and destination have 1)
§ The right number of squares for each piece of 8
§ Pieces of different types aren’t neighbours
§ At least one neighbour of the same type

§ Plus …
§ Each piece of 8 is connected
§ There are no loops in the path.

1) MUMS Puzzle Hunt 2011
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Sometimes the only way to model the problem
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§ Fillomino
§ xijk= 1 if square (i,j) is type k
§ Each square is used once

§ Plus …
§ Each “n-omino” has the correct number of 

pieces

§ Can do this one with composite variables
No 8th piece of unknown size

1) Fillomino, Pearce and Forbes, Submitted April 2016
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Optimistically assume constraints will be satisfied
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1) Optimizing Network Designs for the World's Largest Broadband Project. Ferris, Forbes, Forbes, Forbes and Kennedy, Interfaces, 2015
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Capacitated Spanning Tree Partition
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Direct IP Formulation

zi 1 if node i is a hub

ya 1 if directional arc a is used in the solution

xa “Units of demand” flowing on a

Minimise cost of hubs and arc costs
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Lazy IP Formulation

wi 1 is non demand node i is used in the solution

ya 1 if non-directional a is used in the solution

Number of hubs is (number of nodes used – number of arcs used)

Lazily eliminate problems



New vs Old
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Pickup and Delivery Vehicle Routing
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§ Vehicle capacity and travel times
§ Orders
§ Pickup and delivery locations
§ Pickup and delivery time window

§ New approach combines composite variables and lazy constraints
§ Composite Variable – Order String
§ Series of pickups and deliveries so that the vehicle starts and ends empty
§ Variables handle precedence (pickup before delivery), capacity and time windows

§ Master problem sequences strings
§ Each order covered
§ Flow conservation through strings
§ Pairwise string connections legal
§ Longer string connections may be illegal – even cycles: Lazy Constraints
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GUFLNDP
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§ General Uncapacitated Facility Location and Network Design Problem
§ Nodes, Arcs, Facilities (a subset of nodes) !, #, $
§ Cost of opening each facility (0 means already open)
§ Cost of opening each arc (0 means already open)
§ Cost per unit of movements on arcs
§ Set of requests, each of which has a known volume, origin, candidate 

facilities (a subset of $)
§ Any other constraints on the network structure.

1) UFL – many references
2) Modeling the budget-constrained dynamic uncapacitated facility location–network design problem … Ghaderi et al, 2013
3) An improved Benders decomposition algorithm for the tree of hubs location problem, Martin de Sa et al, 2013
4) Benders Decomposition for the Design of a Hub and Shuttle Public Transit System, Maheo et al, 2015
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GUFLNDP and Benders Decomposition
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§ ! variables open and close nodes

§ " variables open and close arcs

§ Usual Benders Cut: #$ ≥ #∗ − ∑)*!* − ∑+*,"*,.
§ Cost for request . is greater equal to current cost (solving sub-problem) minus 

saving for opening candidate facilities minus saving for opening closed arcs

§ Can solve flow problem for each resource and use dual variables on node and arc 
constraints

§ Solve sub-problem and use dual variables form appropriate constraints

1) Partitioning procedures for solving mixed-variables programming problems, Benders 1962 
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Pareto-optimality
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§ An undominated cut is said to be Pareto-Optimal
§ Magnanti and Wong core point method has been popular – but it is slow to 

compute this
§ “Natural Benders Cut” for GUFLNDP
§ Solve shortest path tree from origin to nearest open facility
§ All dual variables for open facilities and arcs set to zero
§ Dual variables for node ! set to max %∗ − (!)*+, (+∗ where (!)*+ is the shortest 

distance from the origin to node ! and (+∗ is the shortest possible distance from node 
! to any candidate facility for the current resource, if all arcs were opened.

§ Dual variables for unopened arcs set to satisfy the duality conditions:
-+. = max(0, 2+ − 2. − 3+.)

1) Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria, Magnanti and Wong, 1981
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Pareto-optimality
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§ The Natural Cut:
§ Is dual feasible
§ Has the same objective value as the primal optimal
§ Therefore it is primal optimal and is a valid Benders Cut

§ Proving Pareto-Optimality of the Natural Cut
§ Carefully select solutions where the cut is binding (equals optimal solution of sub-

problem)
§ Show that any cut that has equality at all these solutions is the natural cut
§ Therefor the cut can’t be dominated
§ The only exception comes from connecting a resource to its closest candidate 

facility
§ Can solve this with a Balinski style cut (second closest candidate)

1. Integer programming: Methods, uses, computation.  Balinski, 1965
2. Pareto-Optimality of the Balinski Cut for the Uncapacitated Facility Location Problem, Watson and Rogers, 2007
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Benders Summary
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§ Works well for problems which disaggregate (no shared capacity)

§ Avoid feasibility cuts

§ Warm start usually helps

§ Pareto Optimal cuts important

§ Often naturally achievable

§ Heuristics important

§ Open issues

§ Natural warm start

§ Warm start in callback

§ Level of disaggregation

§ Natural second best cut is also pareto-optimal – which is best?

1) Disaggregated Benders Decomposition for solving a Network Maintenance Scheduling Problem, Pearce and Forbes, 2016

2) Several more papers to appear.  Pearce at al, 2016
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Other Applications
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§ Pickup and delivery TSP
Multiple Stacks
§ Solve two TSPs

§ Add lazy constraints if not 
stack feasible

§ Tightness of constraints!

§ Power flow models
§ Many quadratic components in objective (per arc, wire type, time period)

§ Approximate with “natural” cut: !"#$% ≥ '"#$%∗ ) + 2'"#$%∗ ('"#$% − '"#$%∗ )
§ Crane movements
§ Lower bound IP ignoring clash constraints

§ In call back, resolve clash constraints (another IP) to get upper bound and cut off all 
similar solutions



Conclusions
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§ Solve the model you want to solve
§ Especially if there is a big gap from “structure” to full detail

§ Can you approximate the objective function and leave out detail?
§ Is there a natural way to refine an approximation / improve feasibility?
§ Tightness of cuts is important
§ Lift LHS, tighten RHS

§ Become an expert in your modelling environment
§ Fast prototyping, especially of Callbacks

§ Questions?
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