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Complex problems with known exact solutions |

In most operational applications of nonlinear optimisation techniques to large-scale
problems, the true solution can never be established with certainty. This makes it
difficult if not impossible to determine whether the adopted algorithm is converging
to the global extremum, nor can we gauge the true rate of convergence

Moreover, if we have a choice of algorithms, or an algorithm with tunable
parameters, it is not always clear which setting is best for the class of problems of
interest

One way to investigate these issues is to apply our techniques to classes of
problems which possess complex landscapes, yet for which we know the exact
solutions and for which we can control the landscape statistics and the metrical
properties around the extrema

Our approach to designing such classes is to exploit the laws of symmetry which
characterise minimum energy states in physical systems, and their counterparts in
group theory



Motivation behind the work presented here

Users of geophysical remote sensing systems seek more and more
detailed information, so sensor channels grow in number and resolution and
the associated inverse problems become intractable using classical
techniques

Moreover, sensors increasingly are required to adapt their parameters to
the prevailing environment in real-time to optimise performance

The associated objective function landscapes are almost invariably very
complex and the search for global extrema computationally demanding

Genetic algorithms have proven effective for dealing with nonlinear
optimisation problems with complex landscapes, especially design tasks
where time is not a critical concern,

Their stochastic nature has largely precluded their use in those real-time
remote sensing applications where the sensor may have stringent timing
constraints on data acquisition and processing

Accordingly we are motivated to seek ways of accelerating convergence
so that we can employ GAs in our remote sensing applications



Characteristic time scales of radar inverse problems and
parameter optimisation
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Priority tasks for optimisation techniques in off-line and
real-time cases

OFF-LINE
DESIGN

REAL-TIME
APPLICATIONS

find the global extremum, ie, the single best design

map the Pareto front for multi-objective problems

quantify the penalty of selecting near-optimum solutions which
might have other advantages not considered in the optimisation

deliver convergence to an acceptably accurate approximation of
parameters of interest within the rigid data acquisition, processing
and distribution schedule

support real-time adaptation of system degrees of freedom where
this will improve the fidelity of instrumental observations and the
subsequent inversions to retrieve the desired parameters

identify occurrences of measurement data where the inversion is
likely to be degraded

if independent data is available for fusion, optimize the quality of
the fused product, even at the expense of individual system
quality metrics



Priorities for real-time remote sensing applications

(i) For the geophysical parameters of interest, deliver convergence to an
acceptably accurate inversion within the rigid data acquisition,
processing and distribution schedule

(i) Support real-time adaptation of sensor degrees of freedom where this
will improve the fidelity of instrumental observations and the
subsequent inversions to retrieve the geophysical parameters

(iif) ldentify occurrences of measurement data where the inversion is
likely to be degraded

(iv) If other sensor data is available for fusion, optimise the quality of the
fused product even at the expense of individual sensor quality metrics

Priorities for off-line and slow-time applications
(i) Find the global extremum, ie, the best design
(i) Map the Pareto front for multi-objective tasking

(iif) Quantify the penalty of selecting near-optimum solutions which
might have other advantages not considered in the optimisation



JORN : antenna arrays and nominal coverage

Missions : air and surface surveillance
remote sensing




Propagation modes for over-the-horizon radar
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The radar process model
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Inverse problems in OTH radar : Any operator may be the
target unknown in the equation

Diagnose perturbed propagation
so it can be corrected
Measured Doppler

spectra of sea echoes
Design waveform to optimise
measurement of interest

/

s=PRM,S M, Tw

/

Tune signal processing to

e *
optimise performance Calibrate transmitting

antenna array

Calibrate receiving antenna
array and assign receivers

Estimate sea state from the Doppler
spectrum of the scattered signals



Inverse problem # 1 : Estimation of directional wave
spectra from HF sea clutter (simplified form)

Ideal distortion-free
propagation
Doppler spectra

of sea clutter
. Ideal distortion-free

\ / propagation
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Narrow-band signal

3-D spatio-temporal
processing

Narrow beam receiving

Narrow beam transmitting
antenna array

antenna array

Scattering from random sea surface

characterised by directional wave spectrum



Integral equation relating the scattering operator to the
ocean directional wave spectrum
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Radar echo inversion via regularisation employing both empirical
and parametric models
regularisation
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Considerations in probing signal design

The signal should be designed to have high sensitivity to the specific
physical phenomenon of interest

It must also take into account
* the effects of propagation to and from the target area
® interaction of the signal with other features of the environment
®* the signal-dependence of the Tx and Rx subsystems
®* the presence of noise and interference
The remote sensing system may need to adapt its signal in near- real-
time to maintain optimal performance

The inputs to the adaptation process include solutions to both direct
and inverse problems, which must be solved within the characteristic
timescale of significant environmental variations.

The signal should be tolerant of non-ideal sensor properties



2-D Tx array

Adapt 56 antenna
elements to achieve
optimum illumination
of radar footprint

Adaptation DoF
(i) phase

(if) gain

(iii) code

2-D Rx array

Adapt 960 antenna
elements to achieve
optimum reception
from radar footprint

Optimum states :
(i) uniform
(if) focussed




Real-time optimisation of receiver assignment

Problem #1 : fraction a of failed elements in ULA of cardinality n S C[an]

Problem #2 : assignment of n receivers to 2n-element L-array — 2n C

n =480
a=0.01

U

#1:2.1x10"
#2 :2.5 x10286
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Context for Strait of Malacca HFSWR optimisation study

Andaonan Sea
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Multi-objective optimisation for the HFSWR site selection
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HFSWR radar site options for the rim of the South China Sea
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* In the conventional GA methodology, parameter space and chromosome space are
treated very differently.

« The fitness function is naturally defined and evaluated on parameter space, where

gradient search is effected; the genetic operators perform their evolutionary steps in
chromosome space

 Most previous implementations of hybrid methods which combine gradient and GA
schema have retained this distinction, to a large extent

« Our approach attempts to exploit a duality between the two domains of representation,
whereby the action of a specific operator (“eugenics”) involves both spaces.
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Hybrid scheme for accelerated convergence

Recall that each chromosome is the image in SC under a mapping, which we
represent by the encode operator, F , of a state represented by a point in SP

E:S, >S5
We also introduce the decode mapping DD
, D
D:S.—S5p
which maps each chromosome onto the discretised parameter space S 113

Our technique embodies a primitive local search or quasi-gradient mechanism
within a new composite genetic operator,=" which we can write in terms of its
ultimate effect as

= :Sc =8¢
but which has a more complicated chain of domains, acting on both parameter

space and chromosome space, and in a nonlocal sense defined by
neighbourhoods in S~ and Sll))

E  EQDN:Sc > {Sc} >{SP| > Sc

where NC defines a neighbourhood of the target chromosome and () is
the neighbourhood extremum operator in S}?



Chromosome selection and transformation including the
eugenics operator
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Efficiency of the eugenics operator

® modest computational load

® predictable computational load

@ fast identification of neighbourhood in S,

® no need to propose step length or compute Hessian
® avoids need to encode updated solution

® synchronous parallel processing

But how to test it and see if our expectations are met ?

Answer : synthetic ‘designer’ problems



A connection between symmetry, conservation laws and
extrema in physical systems

PROCEEDINGS

OF Proc. R. Soc. A (2011) 467, 3206-3221
THE ROYA LA doi:10.1098 /rspa.2011.0158
SOCIETY Published online 22 June 2011

Extensions of Noether’s Second Theorem: from
continuous to discrete systems

By PETER E. HYyDONY* AND ELIZABETH L. MANSFIELD>

L Department of Mathematics, University of Surrey, Guildford GU2 7XH, UK
28MSAS, University of Kent, Canterbury, Kent CT2 7NF, UK

A simple local proof of Noether’s Second Theorem is given. This proof immediately leads
to a generalization of the theorem, yielding conservation laws and/or explicit relationships
between the Euler-Lagrange equations of any variational problem whose symmetries
depend on a set of free or partly constrained functions. Our approach extends further
to deal with finite-difference systems. The results are easy to apply; several well-known
continuous and discrete systems are used as illustrations.

Keywords: conservation laws; gauge symmetries; difference equations




Complex problems with known exact solutions Il
In one approach, we consider the spatial configurations of a number of
interacting particles confined to a the surface of an n-sphere. For instance,
for n = 2 we may take the case of identically-charged particles ® - electrons,
say - confined to a circular hoop.

It can be shown that the state of minimum energy corresponds to the most
symmetric state, namely, the electrons equally spaced around the circle. In
three dimensions the electrons will reside on the surface of a sphere, and
here the problem is a little more interesting as the states with maximum
symmetry correspond to the vertices of the Platonic solids.

Typically we employ a generalized Riesz potential, with the objective function
taking the form
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Optimal s-energy codes on S?2

e s = log, Smale’s problem, logarithmic points (known for
N=2-6, 12);

e s =1, Thomson Problem (known for N =2 — 6, 12)
e s = —1, Fejes-Toth Problem (known for N =2 — 6, 12)
e S — oo, lammes Problem (known for N =1 —12, 13,14, 24)

For fixed N, any limit as s — oo of optimal s-energy codes is an
optimal (maximal) code.

The codes with cardinality N = 2. 3.4.6. 12 are special (sharp codes)
and minimize large class of potential energies. First "non-sharp" is
N = 5 and very little is rigorously proven.




Generalised Thomson problem : Electrostatics in higher
dimensions

Find the (most) stable (ground state) energy
configuration (code) of N classical electrons
(Coulomb law) constrained to move on the

sphere S2.

is called an optimal s-energy code.




Intermediate states ranked by Riesz energy (eg electrons on a
sphere, interacting via Coulomb potential)




Groups, subgroups and Lagrange’s Theorem |

Definition:

An operation on a set GG is a function * : G x G — G.

Definition:

A group is a set G which is equipped with an operation x and a special element e¢ € &, called

the identity, such that
(i) the associative law holds: for every z,vy, z € G we have x * (y * z) = (xr * y) * 2
(ii) ex x = 2 = x x e for all x € G;
(iii) for every = € G, there is 2/ € GG (so-called, inverse) with = * 2’ = ¢ = 2’ * .

Definition:
A subset H of a group G is a subgroup if \ \ \ a’
(i) e € H;

(ii) if x,y € H, then x xy € H;

(iii) if # € H, then 2~ € H. . 0
b2
Definition:
» . C »

If G is a group and a € G. write

(a) ={a" :n € Z} = {all powers of a};

(a) is called the cyclic subgroup of G' generated by a.




Groups, subgroups and Lagrange’s Theorem I

Definition:

A group G is called cyclic if G = (a) for some a € G. In this case a is called a generator of G.

Definition:

Let G be a group and let @« € G. If a* = 1 for some k > 1, then the smallest such exponent
k> 1 1is called the order of a; if no such power exists. then one says that a has infinite order.

Definition:

If G is a finite group, then the number of elements in &, denoted by |G|, is called the order of

G.

Theorem:

Let GG be a finite group and let @ € GG. Then
order of a = [(a)|.

Fermat’s Little Theorem:

Let p be a prime. Then n? = n mod p for any integer n > 1.



Groups, subgroups and Lagrange’s Theorem lli

Lagrange’s Theorem: If H is a subgroup of G, then |G| = n|H| for

some positive integer n. This is called the index of H in G. Furthermore,
there exist gq,..., g, such that G = Hr{U...UHr, and similarly with
the left-hand cosets relative to H.

Proof: Take any y € G. Note |Hr{| = |H|. If Hr; # G then take any
ry € G\ Hr;. By the lemma, Hry, Hry are disjoint so we have
|Hry U Hry| = 2|H|. By continuing in this fashion, after n steps for

some positive integer n, we will eventually have accounted for all of the
elements of G. We will have |G| =n|H|and G = Hr;U...UHr,,.

Corollary: Let G be a group and g € (G. Then the order of g divides
Gl.

Corollary: Let (7 be a group of prime order. Then (G has no subgroups
and hence is cyclic



Presentations of two-generator groups

Cayley graphof X={a,b| }, ArealisationofX={a,b| aV, bN},

the free group of rank 2. the cyclic group
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Realisations of the 2-generator cyclic group and a
representative subgroup

1 1| .
X ={a, b| a™,b"} {a,b} = {exp [iZn M] ? ,exp [iZnN] 6}

: ] . ~ k1Al .
X = {exp [lZTL’ﬁ] o ,exp [lZTL’N] 9‘ j=1,M;k =1, N}



Variations of the torus realisation of the 2-generator cyclic
subgroup and nested subgroups




Nested toroid realization of a three-generator cyclic group

ey

(continuous case illustrated)

Lie groups



Fitness function landscapes : How can we design these by

choice of subgroup ?
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Present method (brute force) :

Construct a 3-dimensional slice
display in Matlab and sweep it
through the higher-dimensional

space along a pseudo-random

trajectory




Catmull-Clark surface subdivision : Preserves symmetries

* For each face of the mesh, generate the new face points — which are the average of all the original points
defining the face (We note that faces may have 3, 4, 5, or many points now defining them).

* Generate the new edge points — which are calculated as the average of the midpoints of the original edge
with the two new face points of the faces adjacent to the edge.

* Calculate the new vertex points — which are calculated as the average of Q, 2R and (n—-3)S n, where Q is
the average of the new face points of all faces adjacent to the original face point, R is the average of the
midpoints of all original edges incident on the original vertex point, and S is the original vertex point.

The mesh is reconnected by the following method.

* Each new face point is connected to the new edge points of the edges defining the original face.

* Each new vertex point is connected to the new edge points of all original edges incident on the original
vertex point.



A counter-intuitive problem with refinement : non-uniform
Riesz s-potentials

Circumscribed spheres about a regular dodecahedron (left) and a refinement of
the dodecahedron when midpoints of the arcs connecting adjacent vertices are
added (right); both have a high degree of symmetry but only the Platonic
dodecahedron has identical potentials at every vertex for all homogeneous scalar
interactions



A number theory approach : Fermat’s Little Theorem

Fermat’s Little Theorem:

Let p be a prime. Then n? = n mod p for any integer n > 1.

By Lagrange’s Theorem we get

[([a])| divides |Z

) |
pl

which gives
k|p—1,

since

(la])| =k and |Z;| =p—1. So
p—1=Fkd
for some integer d. On the other hand, since k is the order of [al, it follows that for any n € [d]
we have
n* =1 mod p.
hence

M =11=1 mod p.

and the result follows, since kd=p—1. R



An example illustrating the behaviour we wish to achieve

in real-time applications
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Overlay showing the improved convergence achieved using
eugenics
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Examples illustrating the merits and limitations of eugenics
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Residual error wrt global extremum with and without
eugenics
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Time to locate global extremum with and without eugenics
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Conclusions

Nonlinear optimisation (NLO) algorithms play a central role in the design
and operation of complex systems such as OTH radar.

The choice of optimisation algorithm for a given application needs to be
based on a good understanding of its performance, including probability of
attaining the global extremum, convergence rate, robustness, ability to
handle multi-objective problems and so on.

The use of synthetic problems whose global extrema are precisely known
while possessing complex fithess landscapes is a useful way of measuring
some aspects of performance.

We have described and demonstrated this methodology, initially in the
form of a simple physical model, then outlining how a group-theoretical
framework is appropriate for describing and constructing such synthetic
problems.



