Biorri COMMERCIAL MATHEMATICS

SCHEDULING OF MEDICAL PROCEDURES

WHY TO PERSEVERE WITH A MIP APPROACH

BAM 2014 – DR MICHAEL FORBES (AND STUDENTS)

AGENDA

Why we give up on a MIP approach

Why we should persevere

Scheduling of medical procedures

Questions

Why we give up on a MIP approach to optimisation problems

- Our problem is not linear
- MIP is too slow
- MIP run times can blow up with small data changes
- MIP run times can blow up with small model changes
- Good MIP solvers cost money
- Good MIP modellers cost money

Why we should persevere with a MIP approach to optimisation problems

- You get a bound on solution quality
- It makes you think about modelling the problem
- Someone else is dedicated to making your problem run faster
 - Gurobi ~ 30 times speedup (software only) since Biarri started
 - 5.63 to 6.0
 - Easy (90 problems): 5.7 sec to 5.3 sec;
 - Medium (40 problems): 209.9 sec to 140.0 sec;
 - Unsolved in 1 hour (50 problems): 0.67% gap to 0.49%
 - One additional hard problem solved
- Many ways to make MIPs faster
- Many MIP based heuristics.

Making your MIP faster – Tighter formulation

$$\min\sum_{i,j=1..N}d_{ij}x_{ij}$$

Subject to:

.

.

$$\sum_{i=1..N} x_{ij} \le Ny_j \quad \forall j$$
$$\sum_j x_{ij} = 1 \quad \forall i$$
$$\sum_j y_j \le M$$
$$x_{ij}, y_j \in \{0,1\}$$

$$\min\sum_{i,j=1..N} d_{ij} x_{ij}$$

Subject to:

 $\begin{aligned} x_{ij} &\leq y_j \quad \forall \ i,j \\ \sum_j x_{ij} &= 1 \quad \forall \ i \\ \sum_j y_j &\leq M \\ x_{ij}, y_j &\in \{0,1\} \end{aligned}$

- Composite variables:
 - Tighter formulation
 - Reduce symmetry
 - Embodies difficult constraints (e.g. crew scheduling)
 - May be the only way to model the problem
- Delayed column generation / Dantzig-Wolfe decomposition / Branch & Price
 - Useful when there are an exponential number of composite variables
 - Col gen done with CP, DP, MIP
- Keeping track of all columns "generated" by a heuristic search procedure
 - Very useful for VRP and variants.

- Benders' Decomposition
 - Disaggregated cuts
 - Added in callback
 - Integer "structural" variables
 - Classic way to solve Stochastic MIPs

Lagrangian relaxation

Relaxed problem must be "not too easy" and "not too hard"

- Lazy Constraints
- Pieces of 8
 - $x_{ijk} = 1$ if square (i,j) is type k
 - Each square is used once
 - Squares of type 0 have exactly 2 neighbours of type 0 (except origin and destination have 1)
 - The right number of squares for each piece of 8
 - Pieces of different types aren't neighbours
 - At least one neighbour of the same type
- Plus ...
 - Each piece of 8 is connected
 - There are no loops in the path.

- Tighter formulation
- Composite variables / Delayed Column Generation
- Benders Decomposition
- Lagrangian Relaxation
- Lazy Constraints

Scheduling Medical Procedures

- Treatment a list of procedures for a patient
- Procedure
 - Duration
 - List of suitable equipment
- Equipment
 - Specified maximum simultaneous patient capacity
 - List of eligible supervising physicians
 - Is it critical?

- Multi-objective scheduling and a resource allocation problem in hospitals, Silvija Vlah Jeri´c and José Rui Figueira, J Sched (2012) 15:513– 535
- 2) Work done by Sean Watson

Scheduling Medical Procedures

Objectives:

- Maximise number of treatments performed
- Maximise the times when critical equipment is free
- Minimise the waiting time of physicians
- Subject to:
 - The procedures in each treatment are completed in the correct order without gaps
 - All procedures are performed on the correct equipment and with an eligible physician.
 - Multiple physicians and patients may use the same piece of equipment at any time as long as capacities are complied with.
 - Each procedure must be performed from start to finish on the same piece of equipment and with the same physician.
 - Physicians can only supervise one piece of equipment at a time

Scheduling Medical Procedures

IP Formulation as presented in paper						
x _{it}	1 is treatment <i>i</i> starts at time <i>t</i>					
\mathcal{Y}_{ilt}	1 if treatment <i>i</i> is being performed on equipment <i>l</i> at time <i>t</i>					
Z _{hlt}	1 if physician <i>h</i> is supervising equipment <i>l</i> at time <i>t</i>					
W _{ijh}	1 if procedure <i>j</i> of treatment <i>i</i> is supervised by physician <i>h</i>					

Improved IP Formulation							
x _{it}	1 is treatment <i>i</i> starts at time <i>t</i>						
\mathcal{Y}_{ijhlt}	1 if procedure <i>j</i> of treatment <i>i</i> starts at time <i>t</i> on equipment <i>l</i> , supervised by physician <i>h</i>						
Z _{hlt}	1 if physician <i>h</i> supervises equipment <i>l</i> at time <i>t</i>						

Results

Problem		Constraints		Variables		Time (s)		Gap %	
Ι	Т	Orig	Impr	Orig	Impr	Orig	Impr	Orig	Impr
5	15	1857	591	2437	916	8.69	0.63	0	0
7	20	3701	2761	3711	1588	23.35	0.53	0	0
9	20	4955	1441	4412	2994	428.75	2.94	0	0
11	25	7007	1967	7259	3829		2.87	4.00	0
13	25	8188	2186	8413	4730		3.28	1.64	0
15	25	8846	2385	6917	5315		27.41	17.21	0
17	25	9337	2183	9626	5020		218.83	8.16	0
19	25	10451	2423	10035	5723			15.38	1.71
25	25	13293	2823	10567	7705			26.98	10.95
30	30	19705	4129	13420	11427			58.70	10.74

IP Heuristics

Rolling time

- Suitable for problems with an emerging time horizon
- Solve rolling time bands to integrality, with overlap
- Fix and flex style heuristics
 - Fix part of a known solution and optimise the rest

Results

Treatments on Equipment

(B3)

Physicians on Equipment

B

biarri.com

Conclusions

- More and more problems can be handled by MIP
- Having a quality guarantee (a bound) is priceless
- Always try MIP first
- Don't give up too quickly
- Familiarise yourself with the state of the art

Questions?

