Outline

1. Cellular Automata
 - M/M/1 Queue
 - The asymmetric exclusion process
 - Nagel-Schreckenberg process

2. Two-dimensional models
 - NetNasch
 - Open problems
Collaborators

- Tim Garoni (Monash University)
- **Lele (Joyce) Zhang** (Monash University)
- Somayeh Shiri (Monash University)
- Omar Rojas (La Trobe University)
- Andrea Bedini (University of Melbourne)
- Caley Finn (University of Melbourne)
- John Foxcroft (University of Melbourne)
- ...
- VicRoads
(2008) ARC Centre of Excellence MASCOS begin working with VicRoads
 - Six-month AMSI Industry Internship with VicRoads
History

- (2008) ARC Centre of Excellence MASCOS begin working with VicRoads
 - Six-month AMSI Industry Internship with VicRoads

- (2008 - 2011) MASCOS/VicRoads projects build prototype model
 - Stochastic cellular automaton model of traffic in networks
 - Model is discrete in space, time, and state variables
 - Generalizes models studied in Mathematical Physics

- (2012 - 2014) ARC Linkage Project
 - Implemented realistic traffic signals into model (SCATS)
 - Various versions of SCATS, including following features:
 - Adaptive cycle times, splits and offsets
 - Green wave
 - Tram priority processes
 - Pedestrian signals

- (2015 -) ARC CoE ACEMS/VicRoads develop real world applications
 - NetNaSch, a versatile model for road traffic networks
 - CCellular Automaton Simulator for Arterial Roads (CEASAR)
 - Inner North Road and Tram Network
 - VicRoads Policy Development
History

- **(2008)** ARC Centre of Excellence MASCOS begin working with VicRoads
 - Six-month AMSI Industry Internship with VicRoads

- **(2008 - 2011)** MASCOS/VicRoads projects build prototype model
 - Stochastic cellular automaton model of traffic in networks
 - Model is discrete in space, time, and state variables
 - Generalizes models studied in Mathematical Physics

- **(2012 - 2014)** ARC Linkage Project
 - Implemented realistic traffic signals into model (SCATS)
 - Various versions of SCATS, including following features:
 - Adaptive cycle times, splits and offsets
 - Linking (*Green wave*)
 - Tram priority processes
 - Pedestrian signals

- **(2015 -)** ARC CoE ACEMS/VicRoads develop real world applications
 - NetNaSch, a versatile model for road traffic networks
 - CEllular Automaton Simulator for Arterial Roads (CEASAR)
 - Inner North Road and Tram Network
 - VicRoads Policy Development
History

- **(2008)** ARC Centre of Excellence MASCOS begin working with VicRoads
 - Six-month AMSI Industry Internship with VicRoads

- **(2008 - 2011)** MASCOS/VicRoads projects build prototype model
 - Stochastic cellular automaton model of traffic in networks
 - Model is discrete in space, time, and state variables
 - Generalizes models studied in Mathematical Physics

- **(2012 - 2014)** ARC Linkage Project
 - Implemented realistic traffic signals into model (SCATS)
 - Various versions of SCATS, including following features:
 - Adaptive cycle times, splits and offsets
 - Linking (Green wave)
 - Tram priority processes
 - Pedestrian signals

- **(2015 -)** ARC CoE ACEMS/VicRoads develop real world applications
 - NetNaSch, a versatile model for road traffic networks
 - CEllular Automaton Simulator for Arterial Roads (CEASAR)
 - Inner North Road and Tram Network
 - VicRoads Policy Development
M/M/1 Queue

Arrival rate α
Service rate β
M/M/1 Queue

Arrival rate α

Service rate β
M/M/1 Queue

Arrival rate α

Service rate β

α
M/M/1 Queue

Arrival rate α
Service rate β

Length probability distribution function P_n obeys master equation

\[\tilde{P}_0 = \beta P_1 + (1 - \alpha)P_0 \]
\[\tilde{P}_n = \alpha P_{n-1} + \beta P_{n+1} + (1 - \alpha - \beta)P_n \quad n > 0. \]

Factorised stationary solution:

\[P_n = \left(1 - \frac{\alpha}{\beta}\right) \left(\frac{\alpha}{\beta}\right)^n \quad \alpha < \beta. \]
Asymmetric simple exclusion process (ASEP)

- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
- Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
- Spontaneous jams emerge as consequence of collective behaviour
- Advanced analytical methods (integrability, random matrix theory)

If $x_1(t) = 0$, then with probability α, $x_1(t+1) = 1$
If $x_L(t) = 1$, then with probability β, $x_L(t+1) = 0$
If $x_i(t) = 1$ and $x_{i+1}(t) = 0$ then with probability p, $x_i(t+1) = 0$ and $x_{i+1}(t) = 1$
Asymmetric simple exclusion process (ASEP)

- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
- Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
- Sponaneous jams emerge as consequence of collective behaviour
- Advanced analytical methods (integrability, random matrix theory)

\[
\begin{align*}
\text{If } x_1(t) = 0, \text{ then with probability } \alpha, \ x_1(t + 1) &= 1 \\
\text{If } x_L(t) = 1, \text{ then with probability } \beta, \ x_L(t + 1) &= 0 \\
\text{If } x_i(t) = 1 \text{ and } x_{i+1}(t) = 0 \text{ then with probability } p, \ x_i(t + 1) &= 0 \text{ and } x_{i+1}(t) = 1
\end{align*}
\]
Asymmetric simple exclusion process (ASEP)

- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
- Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
- Spontaneous jams emerge as consequence of collective behaviour
- Advanced analytical methods (integrability, random matrix theory)

If $x_1(t) = 0$, then with probability α, $x_1(t + 1) = 1$

If $x_L(t) = 1$, then with probability β, $x_L(t + 1) = 0$

If $x_i(t) = 1$ and $x_{i+1}(t) = 0$ then with probability p, $x_i(t + 1) = 0$ and $x_{i+1}(t) = 1$
Asymmetric simple exclusion process (ASEP)

- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
- Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
- Spontaneous jams emerge as consequence of collective behaviour
- Advanced analytical methods (integrability, random matrix theory)

\[
\begin{array}{cccccccc}
 & & & & & & & \uparrow \\
\text{p}^2
\end{array}
\]

- If \(x_1(t) = 0 \), then with probability \(\alpha \), \(x_1(t + 1) = 1 \)
- If \(x_L(t) = 1 \), then with probability \(\beta \), \(x_L(t + 1) = 0 \)
- If \(x_i(t) = 1 \) and \(x_{i+1}(t) = 0 \) then with probability \(p \), \(x_i(t + 1) = 0 \) and \(x_{i+1}(t) = 1 \)
Asymmetric simple exclusion process (ASEP)

- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
- Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
- Sponaneous jams emerge as consequence of collective behaviour
- Advanced analytical methods (integrability, random matrix theory)

\[
\begin{align*}
\text{If } x_1(t) &= 0, \text{ then with probability } \alpha, \ x_1(t + 1) = 1 \\
\text{If } x_L(t) &= 1, \text{ then with probability } \beta, \ x_L(t + 1) = 0 \\
\text{If } x_i(t) &= 1 \text{ and } x_{i+1}(t) = 0 \text{ then with probability } p, \ x_i(t + 1) = 0 \text{ and } x_{i+1}(t) = 1
\end{align*}
\]
Asymmetric simple exclusion process (ASEP)

Stationary state no longer simply factorised
Asymmetric simple exclusion process (ASEP)

Stationary state no longer simply factorised

but can use **matrix** product formalism

\[
P_L(x_1, \ldots, x_L) = \frac{1}{Z_L} \langle W | \prod_{i=1}^{L} [x_i D + (1 - x_i) E] | V \rangle,
\]

with normalisation

\[
Z_L = \langle W | (D + E)^L | V \rangle = \langle W | C^N | V \rangle, \quad C = D + E
\]

For example,

\[
P_5(10110) = \frac{1}{Z_5} \langle W | DEDDE | V \rangle
\]
If matrices are known, it is easy to compute quantities of interest.

- **Density:**

\[
\rho_i = \mathbb{E}[X_i] = \frac{1}{Z_N} \langle W | C^{i-1} D C^{N-i} | V \rangle
\]
If matrices are known, it is easy to compute quantities of interest.

- **Density:**
 \[
 \rho_i = \mathbb{E}[x_i] = \frac{1}{Z_N} \langle W | C_i^{-1} D C^{i-1} | V \rangle
 \]

- **Current:**
 \[
 J_{i,i+1} = p \mathbb{E}[\tau_i (1 - \tau_{i+1})] = \frac{p}{Z_N} \langle W | C_i^{-1} D E C^{i-1} | V \rangle
 \]
If matrices are known, it is easy to compute quantities of interest.

- **Density:**
 \[
 \rho_i = \mathbb{E}[X_i] = \frac{1}{Z_N} \langle W | C^{i-1} DC^{N-i} | V \rangle
 \]

- **Current:**
 \[
 J_{i, i+1} = p \mathbb{E}[\tau_i (1 - \tau_{i+1})] = \frac{p}{Z_N} \langle W | C^{i-1} DEC^{N-i-1} | V \rangle
 \]

The matrices satisfy the relations:

\[
pDE = D + E,
\]

\[
\langle W | E = \frac{1}{\alpha} \langle W |,
\]

\[
D | V \rangle = \frac{1}{\beta} | V \rangle.
\]

Hence

\[
J_{i, i+1} = J = \frac{p}{Z_N} \langle W | C^{i-1} DEC^{N-i-1} | V \rangle = \frac{Z_{N-1}}{Z_N}
\]
Explicit matrix representation

\[D = \frac{1}{p} \begin{pmatrix} 1 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 1 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad E = \frac{1}{p} \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]
Explicit matrix representation

\[
D = \frac{1}{p} \begin{pmatrix}
1 & 1 & 0 & 0 & \cdots \\
0 & 1 & 1 & 0 & \\
0 & 0 & 1 & 1 & \\
0 & 0 & 0 & 1 & \\
\vdots & & & & \\
\end{pmatrix}, \quad E = \frac{1}{p} \begin{pmatrix}
1 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & \\
0 & 1 & 1 & 0 & \\
0 & 0 & 1 & 0 & \\
\vdots & & & & \\
\end{pmatrix}
\]

\[
\langle W \rangle = \frac{\kappa}{p} (1, a, a^2, a^3, \ldots), \quad |V\rangle = \frac{\bar{\kappa}}{p} (1, b, b^2, b^3, \ldots)^T
\]

where

\[
a = \frac{1 - \alpha}{\alpha}, \quad b = \frac{1 - \beta}{\beta}, \quad \kappa = \frac{1}{\alpha} + \frac{1}{\beta} - \frac{1}{\alpha\beta}.
\]
ASEP Phase diagram

Analytic expressions for
- Stationary state
- Density and current profiles
- Relaxation rates
- Fluctuations, large deviations
Mathematical techniques

- Stationary state: Matrix product states
- Relaxation rates: Eigenvalues of transition matrix \Rightarrow Integrability
- Large deviations, current generating functions: Random matrix techniques, Integrability

Example:

Let $Q_1(t)$ be the total time-integrated current, i.e., the net number of particle jumps between the left boundary reservoir and site 1 in the time interval $[0, t]$.

Moments are encoded in $\langle e^{\lambda Q_1(t)} \rangle$ (average over histories)

Theorem (Current fluctuations)

In the low density regime

$$E(\lambda) := \lim_{N \to \infty} \lim_{t \to \infty} \frac{1}{t} \log \langle e^{\lambda Q_1(t)} \rangle = p \frac{e^{\lambda} - 1}{(1 + a)(e^{\lambda} + a)}.$$
Mathematical techniques

- Stationary state: Matrix product states
- Relaxation rates: Eigenvalues of transition matrix ⇒ Integrability
- Large deviations, current generating functions: Random matrix techniques, Integrability

Example: **Current large deviation function**

Let $Q_1(t)$ be the total time-integrated current, i.e., the net number of particle jumps between the left boundary reservoir and site 1 in the time interval $[0, t]$.

Moments are encoded in $\langle e^{\lambda Q_1(t)} \rangle$ (average over histories)

Theorem (Current fluctuations)

In the low density regime

$$E(\lambda) := \lim_{N \to \infty} \lim_{t \to \infty} \log \frac{1}{t} \langle e^{\lambda Q_1(t)} \rangle = p \frac{a(e^\lambda - 1)}{(1 + a)(e^\lambda + a)}.$$
Nagel-Schreckenberg process

- Generalises ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

 \[
 \begin{array}{ccccccc}
 & & & 2 & & & 0 & 3 & 2 \\
 \end{array}
 \]

- x_n and v_n denote position and speed of the nth vehicle
- d_n denotes the gap in front of the nth vehicle
- NaSch rules:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$
Nagel-Schreckenberg process

- Generalises ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

- x_n and v_n denote position and speed of the nth vehicle
- d_n denotes the gap in front of the nth vehicle
- NaSch rules:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$
Nagel-Schreckenberg process

- Generalises ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

\[
\begin{array}{cccccc}
 & & & 2 & 0 & 2 & 3 \\
\end{array}
\]

- x_n and v_n denote position and speed of the nth vehicle
- d_n denotes the gap in front of the nth vehicle
- NaSch rules:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$
Nagel-Schreckenberg process

- Generalises ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

 x_n and v_n denote position and speed of the nth vehicle
 d_n denotes the gap in front of the nth vehicle
 NaSch rules:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$
Nagel-Schreckenberg process

- Generalises ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

```
[  ] [  ] [  ] 1 0 [ 2 ][ 3 ]
```

- x_n and v_n denote position and speed of the nth vehicle
- d_n denotes the gap in front of the nth vehicle
- NaSch rules:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$
A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems

Lele Zhanga,b, Timothy M Garonib,*, Jan de Gierc

aARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
bSchool of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia
cDepartment of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
Two-dimensional models

Traffic modelling: network of cellular automata

(a) Road network

(b) Intersection

- master node
- slave node
- non-subsystem node
- boundary node
NetNaSch: A mesoscopic model of arterial networks

- **Ingredients:**
 - Dynamics on lanes modelled with (extended) NaSch model
 - Multiple lanes with lane changing
 - Turning decisions (random)
 - Appropriate rules for how vehicles traverse intersections
 - Sydney Coordinated Adaptive Traffic System (SCATS)

- **Features:**
 - Multiple agent types: cars, trams, buses, bicycles, pedestrians, ...
 - Easily applied to arbitrary network structures
 - Essentially any rules for traffic signals can be implemented
 - Relatively modest amount of input data required
NetNaSch: A mesoscopic model of arterial networks

Ingredients:
- Dynamics on lanes modelled with (extended) NaSch model
- Multiple lanes with lane changing
- Turning decisions (random)
- Appropriate rules for how vehicles traverse intersections
 - Sydney Coordinated Adaptive Traffic System (SCATS)

Features
- Multiple agent types: cars, trams, buses, bicycles, pedestrians, ...
- Easily applied to arbitrary network structures
- Essentially any rules for traffic signals can be implemented
- Relatively modest amount of input data required
NetNaSch: A mesoscopic model of arterial networks

Ingredients:
- Dynamics on lanes modelled with (extended) NaSch model
- Multiple lanes with lane changing
- Turning decisions (random)
- Appropriate rules for how vehicles traverse intersections
 - Sydney Coordinated Adaptive Traffic System (SCATS)

Features
- Multiple agent types: cars, trams, buses, bicycles, pedestrians, ...
- Easily applied to arbitrary network structures
- Essentially any rules for traffic signals can be implemented
- Relatively modest amount of input data required

Goals:
- Statistical mechanics of traffic (phase transitions, non-equilibrium behaviour)
- New scenario analysis, generic behaviour
- Policy development
 - Parking restrictions
 - Change signal systems
 - Tram priority
http://ceasar.acems.org.au
The functional relationship between flow and density is the **fundamental diagram**

- Can be computed analytically for ASEP
- What should happen in a network?
- How should one even **define** network flow? (No prescribed direction)
Macroscopic Fundamental Diagrams

- Simplest idea: relate arithmetic means of link density and flow

- If network has link set \(\Lambda \):
 \[
 \rho = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} \rho_\lambda, \quad J = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} J_\lambda
 \]

- \(\rho_\lambda \) is density of link \(\lambda \) and \(J_\lambda \) is its flow

Geroliminis & Daganzo 2008
Empirical data from Yokohama

Buisson & Ladier 2009
Empirical data from Toulouse
Time-dependent demand

- Hysteresis in MFD consequence of heterogeneity

Zhang, G & de Gier 2013
Simulated data
Can a simple model explain hysteresis?

\[
\frac{d\rho_1}{dt} = A(\rho_1) - b_1 J(\rho_1) + J(\rho_2)p_2(1 - \rho_1) - J(\rho_1)p_1(1 - \rho_2),
\]

\[
\frac{d\rho_2}{dt} = A(\rho_2) - b_2 J(\rho_2) - J(\rho_1)p_1(1 - \rho_2) + J(\rho_1)p_2(1 - \rho_1)
\]

Let bin 1 be the boundary and bin 2 the interior.
Loading and recovery phases of the two-bin model provide explanation.
Can a simple model explain hysteresis?

\[
\frac{d\rho_1}{dt} = A(\rho_1) - b_1 J(\rho_1) + J(\rho_2) p_2 (1 - \rho_1) - J(\rho_1) p_1 (1 - \rho_2),
\]

\[
\frac{d\rho_2}{dt} = A(\rho_2) - b_2 J(\rho_2) - J(\rho_1) p_1 (1 - \rho_2) + J(\rho_1) p_2 (1 - \rho_1)
\]

Let bin 1 be the boundary and bin 2 the interior.

Loading and recovery phases of the two-bin model provide explanation

Theorem (Law of traffic)

It is easier to jam a network than to resolve it.
Open problems

- Good theoretical models amenable to non-numerical analysis
- NetNaSch: A realistic and flexible model of traffic in arterial networks
- CEASAR: browser based CELlular Automata Simulator for Arterial Roads
- Real time estimators of network behaviour
- How does driver adaptivity affect the shape of MFDs?
- Study on tram priority in Melbourne
- **Big data**: Integrate stopline data (density), GPS data of probe vehicles and predictive modelling