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For example, for port asset (size) selection




Rail network as a graph
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Health and service networks
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When want to analyze today’s systems...




Modelling for futures:
what are we trying to achieve?

Impact of policies and decisions over time

Determining sequences of decisions that lead to favourable futures
Future requirements for assets, systems and networks

Understand biophysical limits and their implications

Cost-optimal ways of meeting future demands
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Why use optimisation?

Systems constrained in weird and wonderful ways
Multi-objective tradeoffs

Huge decision spaces

Situations where discrete decisions are important

Situations where managers think deeply about decisions
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Energy generation mix

Electricity Generation by Technology
31RO Model Version: PWES ESM svn #1232, 23 Aug 2011

This chart is 3 projection based on data assumptions supplied by the user through a web-based interface and applied to a CSIRO economic model
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Vehicles
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Beef supply chains

Properties Junctions Farms Abattoirs Ports

10000
]

Figure 4.1: Diagram of the northern Australian beef supply chain. Truckloads of livestock are
transported from properties to fattening farms, possibly through transshipment sites. After a
number of periods in the farm, the cattle are taken to the abattoirs for processing. The final
locations of the abattoirs are not known a priori, but determined as part of the optimisation
problem from a set of candidate locations. In the final stage, meat is transported to the ports.
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Beef: existing and future road links




R cebn JI =

Sher
Pyramid Junction

Py ra% id

Woodstock Junctio

4

Billinnooka

Munjina Junction*

=sNanutarra
Rocklea

s
Ashburion Downs

Data

19°58'30.33" §

Wallareenya s |
""' \..Ti]hbg'[ubha » H:," Calawazel Creek _
\ ‘Eq p}dh “Eginbah2'Junclion
.‘__\ _ -

Wet season interruption

De Grey AT

=Mulyie #pe Grey Junction

Ettrlck
Nlm!nqurra

"Carlind|
s Wana'or'g Muccan

"qunba*“l J:'ﬁ..tlorl e ¢ -
W irrawagine

lon

; \%ﬂ?oo _Sb_r'!'ngs

Bonney Downs

Marillana Mount{Divide

Ethel Cresk

#EthellJunt ‘llnn

\

~‘Newman

Hov'lH:II

BaltourDowns

I‘u'l'\urul N

Robertson|Range

clev 141 It Eye alt 280.82 mi




Port planning

Simulation and optimisation to
analyse berth and shipping
channel capacities
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Role of optimisation models in projection,
forecasting and planning

LP/MIP: well understood limitations

* Deterministic

* Perfect lookahead

e Rationality, centralized control

* No voodoo: mathematically verifiable and concisely expressible
Role for methods other than LP/MIP (including LR)

e Computational time

» Solution evaluation requires simulation of a system
Why not only opt?

e Detail

Non-linearity (e.g., power flow)

Incremental decisions (e.g., perfect lookahead is very bad)

Non input-output systems (e.g., demand-infrastructure co-dependency)

Assumption of determinism is poor
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What is difficult about using optimisation
for modelling the future?

In approximate order of difficulty, and in our experience:
1. Formulating an LP

2. Heuristics and approximations to achieve acceptable running-
time

Implementing the core software systems for the models

4. Getting data, managing data, translating data into model
parameters and coefficients: doing this reliably and repeatedly,
and where domain stakeholders are satisfied with the answers
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eather stations
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Fire weather conditions analysis
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Distribution network outages

Qutages Per Million AKH

%,, £
i
£
i
i I
SEE
iy AGERT
o | =
e
| w4

»14400 grid squares

*80 GB of wind data
»77000 km of feeder
=38000 outage events
(2000 wind and vegetation)




Land use




Costs and revenues

Table A1-1 Transmission costs for new generation projects

Line Total Cost

Cost of Upgrade of
Connection | Cost Connection

Region | Zone Generation Type ($m/MW) ($m/MW) ($m/MW)

SA NSA Wind 0.03 0.5 0.53

SA NSA Geothermal 0.29 0.5 0.79

SA NSA Solar Thermal 0.07 0.5 0.57

SA NSA Gas/Coal/Biomass | 0.02 0.5 0.52

SA SESA Wind 0.03 0.5 0.53

SA SESA Biomass 0.04 0.5 0.54

SA SESA Geothermal 0.14 0.5 0.64

SA SESA Gas/Coal/Biomass | 0.04 0.5 0.54

SA ADE Wind 0.03 0.3 0.33

SA ADE Geothermal 0.14 0.3 0.44

SA ADE Gas/Coal/Biomass 0.02 0.3 0.32

VIC MEL Wind 0.02 0.3 0.32

VIC MEL Gas/Coal/Biomass 0.01 0.3 0.31




Resource data
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Where are renewable energy sources, and
where is the transmission network needed?

Wave Flux 100%
(e.g. 36 kW/m)
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Long-term infrastructure planning




Transmission network expansion and
generation site selection

Devise a new model/tool to fill a gap between:

* Power flow analysis (on a fixed network) and the case-based analysis of
transmission options

e Long-range planning models which decide on generation but which do not
directly consider network changes

Figure 1 New high-capacity augmentation options
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Transmission zones




Freight transport network planning

Decide on the capacity of transport links and facilities subject to
time-varying demand

Link and facility capacities are associated with discrete pre-
defined states.

* Deciding on the state for each year
= deciding on transport infrastructure investment

ifo Brofessional - [Facility,Road_Links,.., Satellite Map] = = = Maplnfa Profe n_2030,.., Satelite Map] =3[
ls Objects Query Table Options Map Window Help IFAP _8x i File Edit T uery Table Oy Window Help IFAR -8 x
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Data for a region, input using a GIS Optimal freight flows and infrastructure
platform plans for each year




Asset states




Assets represented as projects
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Assets represented as incremental capacity
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Essential elements of the freight model

Facilities

Sources and destinations for freight (mines, ports, farming
regions. Junctions and other capacity-constrained locations.

Roads, railways, pipelines, conveyors, sea lanes

Links /

Products for transport: cattle, iron ore, copper concentrate, etc.
Includes inputs for mining and agriculture

Commodities /

Vehicle types

Vehicle types include (trains of) mineral wagons, cattle trucks and
trucks for general freight. IFAP respects compatibilities between
vehicle types, facilities, links and commodities (this is via user-
supplied rules and data). Fleet sizing, fleet flow balance and
annual conversion between types is partially supported in IFAP at
present.

Processes

|

Logistics processes cover the movement of freight.
Transformation processes cover the production of
commodities using zero or more input commodities. This
includes commodity extraction via mining. Demand is expressed
in terms of how many tonnes of each process is required in
each period (year)




IFAP, TNEP, CCS and Beef

Freight Electricity CeS Beef
Ports, Power Sources, Farms,
Facilities junctions, stations, sinks abbatoirs,
factories substations ports
Link Roads, Powerlines Pipelines Roads
INKS railways,
pipelines
» Many Electrical CO2 Livestock,
Commodities physical power meat
goods
Vehicle types types
One for One for One for Livestock
each power flow CO2 flow flow, meat
Processes demand or flow,
trans- slaughter

formation




Sugar transport process
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TNEP

Optimized Transmission Network Expansion Planning and
Generation Selection

 Transmission Network Expansion Planning
e Selection of generation regions/sites
Screening tool: identifying favourable options, first-cut costing

Inter-NTNDP zone (“network planning”)
or Intra-NTNDP zone (“harvesting”)

“Load block” approach: average and stress cases for supply/demand
Optimisation model with database system and GIS interface
Yearly timestep, 2012-2050

Optimise within specified generation mix
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TNEP Scale

16 NTNDP Zones (+ WA to follow)

Up to 12 technologies per zone, approx 30 technologies in total
Over 100 relevant SSD *

Time series: one hour resolution, 2003-2050 *

Load blocks: 1, 8 or 24 per year

6 renewable (intermittent) supply series, by 43 regions *

100+ existing NEM points of interest

9800 (tech,year,state) points — double at NTNDP level

(* for finding network stress periods)
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Renewables supply
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NEM-level model
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Model overview

Minimise opex, capex and penalties
Subject to:
Demand satisfaction (8+ load blocks)
Electricity flow (DC approx P=B0O for intra-NTNDP)
Generation and transmission capacity
Supply cost
Generator profitability
Generation technology mix

Project state transition and retirement/refurbishment
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What is the best layout of a future CO2
sequestration network?

Final Network State

Initial Network State

#* Facility unconstructed

Facility constructed

Pipe unconstructed

== Pipe constructed
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CCS MIP model decision variables

The MIP model makes constrained decisions about
capture, transportation and storage.

It takes as input the maximum amount of CO2 emitted, the

amount that should be captured, and the sequestration
capacity

Decision variables:

r! : flow through edge e at time ¢

z9t: whether edge e with diameter d exists at time ¢
s;: shortfall at time ¢

vf . carbon captured from capture site ¢ at time ¢
w: carbon injected into storage site s at time ¢

y! : whether capture site c exists at time ¢

y! : whether storage site s exists at time ¢

G




CCS MIP model objective function

Minimize:

ZPtSt + Z B zft 4 Z C'g (zgt - 33@—1)) e Z B, (yz _ ygt_lj) g
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Defining and solving freight scenarios

A range of facility types are available in e Datais entered and solutions are
IFAP: explored using a GIS package with
e Ports and berths custom Ul features:

Production/processing facilities

q VIDEO: transport link definition VIDEO: capacity option definition
Farming centres

Loading points
and intermodal facilities

Population centres

VIDEO: detailed solution exploration

Mines

Capacity-constrained junctions
Warehouses and stockpiles

e Long-term whole-of-system view is
important for government, capital
investors, port owners/ operators
and major supply chain participants




Data and model linking

Economic Demand .
Projection Projection Intermittent
Supply

_ Characterisation
Demand series

Generation mix :
Energy Sector Supply series

Model

TNEP

Supply and demand series
Asset schedule
Interconnector capacities

Capacities and costs

Location
Geography Connectivit 2-4-C Market
Existing Assets y Model
Projects
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Closing remarks

OR methods are very useful for studying the future

The constraints of biophysical and socio-technical systems lead us to
MIP, SD and simulation, with support from heuristics

State-based representation, time expanded networks
Visualisation, especially GIS

Big gap between fit-for-analysts and fit-for-users

The data task is the most burdensome

These systems are big — re-purposing for multi-domains is good
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