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Floods in Victoria

Saturday, January 15, 2011.
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A problem to think about

Suppose that you are the engineer for the local government
authority. The authority has asked you to build a levee to
protect the town from flooding.

Your task is to design it. In particular, you need to decide how
high it should be. Considerations are:
• If there is a flood higher than the levee, it will ‘overtop’ and

inundate the town.
• The higher the levee is, the more expensive it will be to

build. There could be other downsides in terms of amenity
if the levee is built it too high.
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A simple model

Typically you will have some historical data about flood levels.

Year Maximum level
1841 5.3m
1842 6.5m
1843 5.6m

...
...

However, the time series of data may not contain any instance
of a flood as extreme as the one that we want to protect against.
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A simple model

Once we build the levee, its height h is fixed. However the flood
height at any given time is a random variable. Let Xi be the
maximum flood height in year i .
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A simple model

Assume that the levee has a design lifetime of T years. In order
to inform our decision about how high to build the levee, we
need to work out the probability that a flood will overtop the
levee at some time in the next T years if we build it at height h.

It is actually easier to work out the probability that a flood will
not overtop the levee. Mathematically, we can write this as

P(MT ≤ h)

where
MT = max

i=1,...,T
Xi .
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A simple model

Straightaway we have

P(MT ≤ h) = P(Xi ≤ h for all i = 1, . . . ,T ).

We can rewrite this as

P(MT ≤ h) = P(X1 ≤ h,X2 ≤ h, . . . ,XT ≤ h).

If we now assume that the maximum flood levels in each year
are independent (this could be a dubious assumption), then we
can write this as

P(MT ≤ h) = P(X1 ≤ h)P(X2 ≤ h) . . .P(XT ≤ h).
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A simple model

So
P(MT ≤ h) = ρT

where
ρ = P(Xi ≤ h).

Since it is a probability, ρ is a number between 0 and 1. If ρ = 1
(what does this mean physically), then ρT = 1 for all T .

On the other hand if ρ is any other number between 0 and 1, ρT

will approach zero as the design lifetime T gets large.
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A simple model

We would like to derive an expression for ρT where T is
reasonably large, say T = 50 or T = 100.

The problem is that we have no direct way of estimating from
the data what the value of ρ is.

Remember that, just because we have never seen a flood of
height h, it does not mean that it can’t happen.
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An aside

To illustrate how statisticians think about such problems, I’m
going to consider a related problem, which you may be familiar
with. This is to calculate

P(AVT < h)

where
AVT = (X1 + X2 + · · ·+ XT )/T

is the average (rather than the maximum) flood height over our
planning period T .
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An aside

One of the most well-known results in statistics, the Central
Limit Theorem tells us that, provided the mean and variance of
the Xi exist, we can find scaling factors aT and shift factors bT
such that

P(AVT ≤ aT h + bT )→
1√
2π

∫ h

−∞
e−y2/2dy

as T gets big.

The expression on the right is the distribution function for the
Standard Normal Distribution.

Slide 12



, ,

Two reasons to believe in God

• The limiting distribution is normal, whatever the distribution
of the Xi , provided that it has a mean and variance.

• The scaling and shift factors depend on the distribution of
the Xi only through some simple measures.

Specifically, the factor bT is the mean µ of the random
flood heights Xi , which we can estimate from our data by
putting it equal to the sample average.

The factor aT is σ/
√

T , where σ2 is the variance of the Xi ,
which we can also estimate from our data.
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The Central Limit Theorem

The upshot is that

P(AVT ≤ σ̃h/
√

T + µ̃) ≈ 1√
2π

∫ h

−∞
e−y2/2dy

where µ̃ and σ̃ are our estimates of µ and σ respectively.

This is the same as saying

P(AVT ≤ h) ≈ 1√
2π

∫ (h−µ̃)
√

T/σ̃

−∞
e−y2/2dy .
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Back to our problem

Our approach to making statements about probabilities
involving the maximum is essentially the same: we just need to
change the details concerning the limiting distribution and the
estimation of the scaling and shift parameters.

The analogue of the Central Limit Theorem that applies to
maxima is the Three Types Theorem, which was originally
stated by Fisher and Tippett (1928), and later proved rigorously
by Gnedenko (1943).
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Some personal information

R. A. Fisher (1890-1962). A genuine great in two fields of
science.
Hald said ‘a genius who almost single-handedly created the
foundations of statistical science’.
Dawkins said ‘the greatest biologist since Darwin’.
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Some personal information

L. H. C. Tippett (1902-1985). An English statistician.
Spent his entire career, 1925 to 1965, on the staff of the Shirley
Institute, Manchester.
Mostly known for his work with the textile industry.
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Some personal information

B. V. Gnedenko (1912-1995).
A leading member of the Russian school of probability theory
and statistics.
He also worked on applications of statistics to reliability and
quality control in manufacturing.
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The Three Types Theorem

Says that if we can find a sequence of scaling constants aT and
shifts bT such that

P(MT ≤ aT h + bT )→ F (h)

as T gets big, then (up to scale and shift) the limit function
F (h) must take one of three forms.

F (h) = exp(−e−h) The Gumbel Distribution

F (h) =

{
0, x < 0
exp(−x−α) x ≥ 0

The Frechét Distribution

F (h) =

{
exp(−|x |α x < 0
1 x ≥ 0.

The Weibull Distribution

where α > 0.
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Some personal information

E.J. Gumbel (1891-1966). A German mathematician, who was
a prominent anti-Nazi intellectual. Fled to France in 1932 and to
the US in 1940.
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Some personal information

M.R. Frechét (1878-1973). Made major contributions to the
topology of point sets and introduced the concept of a metric
spaces.
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Some personal information

E.H.W. Weibull (1887-1979). A Swedish engineer, who
published many papers on strength of materials, fatigue,
rupture in solids, bearings, and the Weibull distribution.
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A simple model

The problem of making predictions about the maximum of the
Xi is a bit more complicated than the problem of making
predictions regarding the average of the Xi , but it can be done
along similar lines.

• First, we have to work out which of the limiting distributions
is the appropriate one, and if it is Frechét or Weibull, we
need to estimate the parameter α.

• Second, we have to work out the scaling constants aT and
the shifts bT .

• Finally, provided that T is large, we can use the Three
Types Theorem to calculate the probabilities.
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A simple model

The first part is not too bad. The limiting distribution depends
on the probabilities P(X1 ≤ h) in a relatively systematic way.
• If there is a fixed maximum level for the Xi , then the limiting

distribution is Weibull. The value of α depends on the
behaviour of P(X1 ≤ h) for h just less than the maximum
level.

• If the probabilities P(X1 ≤ h) have what is called a heavy
tail, then the limiting distribution is Frechét. We can get the
value of α from the nature of the heavy tail.

• In all other cases (which include most of the standard
probability distributions in undergraduate courses), the
limiting distribution is Gumbel.
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A simple model

We still have the problem of estimating the scaling constants aT
and the shifts bT . Unfortunately, unlike the Central Limit
Theorem, these depend on more complicated probabilistic
properties of the Xi than just the mean and variance.

This means that we do have to put some effort into modelling
the Xi . There are techniques, such a the Peaks over thresholds
method for doing this. Basically we need to know more about
the distribution P(Xi ≤ h) than when we were deriving the
distribution of the average.

I found some packages on the web that claim they can do it.
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A simple model

Some examples of aT and bT are
• If P(Xi ≤ h) = 1− e−h (Exponential), then aT = 1 and

bT = log T .
• If P(Xi ≤ h) = 1− h−α (Pareto), then aT = T 1/α and

bT = 0.
• If there is a ω, such that

P(Xi ≤ h)

{
≈ 1− (ω − h)α h close to ω
= 1 h ≥ ω

(Bounded Support), then aT = T−1/α and bT = ω.

Slide 26



, ,

Conclusion

We derive the appropriate form of F and estimate aT and bT .
Then

P(MT ≤ ãth + bt) ≈ F (h).

This is the same as saying

P(MT ≤ h) ≈ F ((h − bT )/aT ).
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Conclusion

So we could choose the height h
• so that the probability

1− F ((h − bT )/aT )

of overtopping during the planning horizon T is sufficiently
small, say less than ε, or

• so that the trade-off between

1− F ((h − bT )/aT )

and the cost C(h) of building the levee to height h is
acceptable.
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