Challenges in Underground Mine Planning:

Hyam Rubinstein
with Melbourne network group –
Marcus Brazil,
Peter Grossman,
David Lee,
Doreen Thomas
Nick Wormald

BAM November 2012
Underground Mine Planning - Challenges for Optimisation
Strategic Optimisation

- Fundamental Decisions
- Stope Definition
- Access Design
- Scheduling
Strategic Optimisation

Inputs:
- Block Model
- Financial Model
- Infrastructure and production costs
- Geotechnical Data
- etc…

Fundamental Decisions
Stope Definition
Access Design
Scheduling
Strategic Optimisation

- Cut-off grade/s
- Mining method/s
- Bench heights
- Properties of the Mill etc…
Strategic Optimisation

- Orebodies and orebody envelopes
- Determination of Bench RLs
- Placement of amalgamated or simplified stopes.

Fundamental Decisions

Stope Definition

Access Design

Scheduling

BAM November 2012
Strategic Optimisation

- Decisions on declines vs. shaft
- Templates for level layouts
- Topology of access network (with relaxation of some physical and geotechnical constraints).
Strategic Optimisation

- High level schedules (a month or year at a time)
Tactical Optimisation

Stope Definition

Access Design

Scheduling
Tactical Optimisation

- Determination of all stopes, allowing for complex stope shapes.
- Stopes meet physical design constraints
- Geotechnical requirements and constraints addressed.

Stope Definition

Access Design

Scheduling
Tactical Optimisation

- Determination of all stopes, allowing for complex stope shapes.
- Stopes meet physical design constraints
- Geotechnical requirements and constraints addressed.

- Detailed layout of the mine access network.
- Physical and geotechnical constraints taken into account

Stope Definition
Access Design
Scheduling
Tactical Optimisation

- Determination of all stopes, allowing for complex stope shapes.
- Stopes meet physical design constraints
- Geotechnical requirements and constraints addressed.

- Detailed layout of the mine access network.
- Physical and geotechnical constraints taken into account

- More Detailed scheduling over shorter time periods
Challenges in this approach

- Information about the ore zone, ground conditions, financials etc changes throughout the planning process. Key decisions need to be locked in only when sufficient data is available, to ensure that value is not lost.

- The production schedule is dependent on an accurate evaluation of the geotechnical constraints on mining sequences. Adequate ventilation can also be a limitation on production.
Challenges in this approach

- Optimisation techniques are applied separately at each stage of the process – design of stopes, access and scheduling. Integration can only be obtained by iteration, producing a large number of strategic designs and then a more detailed analysis of the best ones.

- Further efficiency may be obtained e.g. using the access design which gives the highest value schedule rather than least cost, or determining which stopes are uneconomic, due to access cost of outliers from the main ore zone.
BAM November 2012
Main decline highlighted in blue
Main decline highlighted in blue
Crosscuts shown in light blue

BAM November 2012
A decline is a path navigable by mine equipment—e.g. trucks, boggers, drills—which services underground draw & access points.
Turning circle constrained paths

- Minimum length, smooth, curvature-constrained paths between directed points in the plane have the forms **CSC** and **CCC**, where **C** corresponds to an arc of a circle with radius \(r \) and **S** to a line segment (Dubins, 1957).
Extended to gradient constrained 3d paths - no crosscuts solution
Decline Optimisation Tool (DOT) - scope & data set

- **Objective**
 - minimise development cost + haulage cost

- **Operational Constraints**
 - Maximum gradient \(m \) for decline
 - Radius \(r \) of minimum turning circle
 - Development cost ($/m)
 - Haulage cost ($/tonne.km)

- **Target points**
 - Group identifier, \(x, y, z \), bearing at target, tolerance, tonnage, point label, crosscut length

- **Barrier file via triangulations**
 - Indexed set of co-ordinates of triangles & triangulated barriers represented by ordered triples of the indexed vertices

BAM November 2012
DOT optimal decline
With no barriers

DOT decline for the same target set but with a barrier

BAM November 2012
A snapshot of an optimal decline generated by DOT-decline optimisation tool
So far we have seen examples where the decline is a path - but in general, a decline is a branching structure.

Nodes correspond to access points and surface portal.

Links correspond to centreline of decline.

Finding the topology and locations of breakouts (steiner points) in a tree decline layout – this is an NP hard combinatorial problem.
Minimum gradient-constrained trees

Understanding the geometry of these minimum networks, has enabled us to find good approximate solutions to this optimisation problem.
DOT generated tree network with optimal breakout
Twin decline development
Nominated single decline development
Using PUNO to find optimal layout of a level development
DOT and PUNO combined for optimal access development
Mineoptima software tools under development

- **UNO**
 - A strategic planning tool which finds the best tree structure for an underground mine development

- **UMOID**
 - Underground Mine Optimal Infrastructure Designer incorporates ventilation and escape way development into the DOT like optimisation of declines

- Optimal declines in heterogeneous conditions e.g. bad ground

- Optimising infill drilling programs
UNO - Underground Network Optimiser
An example of UNO designing the template for an optimal decline layout
Using UNO for an optimal strategic decline layout of Prominent Hill
UMOID - Underground Mine Optimal Infrastructure Designer

BAM November 2012
Minimum cost infill drilling layout
PRIMO project

• Aim was to integrate software tools which will allow rapid design of an underground mine
 - Optimal layout of stopes (Chris Alford’s StopeOpt)
 - Optimal Access (DOT, PUNO)
 - Optimal scheduling (SOT)

BAM November 2012
PhD student Kash,

- Determine the access network which maximizes production revenue minus development cost, discounted by the time taken to complete tasks.
- A family of linked equations has been found, so that iteration appears to converge to the maximum value.
Current projects 2

- Drilling equipment (jumbo) is expensive for both development and ore extraction.
- Develop a scheduling algorithm for an optimal sequence of tasks for the jumbo.
- Determine when to operate a second jumbo.
- Combine the two projects into a decision tool for access design and scheduling at a tactical level.
Mineoptima

Mineoptima is a spin off from the University of Melbourne to achieve commercialisation of our software. The access design software DOT and PUNO, for networks of declines and level layout infrastructure around the ore zone, respectively, will be released through Maptek early next year.

See www.mineoptima.com.au for more details