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Introduction

Approximate dynamic programming will change your life!

Quick dynamic programming refresher

Stochastic dynamic programming

The “curse of dimensionality”

A general ADP algorithm

Worked examples

Future directions

Key reference: 

Approximate Dynamic Programming: Solving the Curses of Dimensionality

Second Edition, 2011.  Warren B. Powell, Wiley Series in Probability and Statistics
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Dynamic Programming

A simple example
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Inventory ordering problem

Data:

Starting stock level

Maximum stock level

Demand in each time period (deterministic)

Total cost of ordering n units of stock = F(n), for some given function F

Typically non-linear, increasing

Cost per unit per time period of holding stock

Stock out cost

Determine:

Quantity of stock to order in each period



Dynamic Programming

Let’s get our notation straight
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S Discrete state space

A Discrete action space

Stages indexed by t : This often corresponds to time periods

Transition function: 

The state we are in at stage t+1 depends on the previous state and action

In our example, the new inventory level depends on the previous level, quantity 

ordered and the demand

Contribution function: 

The immediate cost (or value) of making decision at in state St.  F in our example.

Value function:

Total cost (or value) of making all the best decisions from here to the end
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Dynamic Programming

Solving simple dynamic programming problems is easy
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Code recursive function directly

“Memo-ise” values for efficiency

Return value function and the argument that achieves the optimal value



Stochastic Dynamic Programming

Extending to stochastic problems is sometimes easy
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Our example:

Demand is no longer constant, but rather given by a known, discrete probability 

distribution

Notation: 

Transition matrix:

Probability that if we are in state St and take action at that we will next be in state St+1

For our example this can be calculated from the demand distribution and our action

Value function:

alternatively:
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Stochastic Dynamic Programming

Solving simple stochastic dynamic programming problems is easy
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Code recursive function directly

“Memo-ise” values for efficiency

Return value function and the argument that achieves the optimal value

The answer is an expected value and a policy.  For each possible state, it specifies the 

optimal action.



Curses of dimensionality

Some problems are too hard to solve exactly
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Consider our example expanded to 10 product types:

If we have 1000 maximum units in stock for each product, we have 100110 possible states

If demand for each can range from 0 to 200, we have 20110 possible outcomes

If we can order between up to 500 units at a time, we have 50110 possible actions

These are the three curses of dimensionality:

State space – traditional curse of dimensionality for deterministic problems

Outcome space – we may not be able to compute our expectation

Decision space – LP and MIP regularly handle very large decision spaces



The Basic Idea

There is a way forward
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Outline approach:

Make an initial estimate of Vt(St) for states St

Repeatedly choose “sample paths” of random outcomes

At each time step, make the optimal decision based on the estimates of Vt(St)

Update the estimates based on the observed actual values

We produce a set of “value function approximations” which collectively define a 

policy, as we can make a decision at so as to minimise:

Balance (known) short term costs with (estimated) long term costs

Using just short term costs is known as the myopic policy

It is surprisingly popular!
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Some examples

This tricky idea is best understood by some concrete examples
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Assigning prime mover / driver pairs to jobs:

Cost of assignment of driver to each job known: Travel time, specific payments, etc

New jobs arriving at random (with known distribution)

Myopic  policy: assign drivers to jobs based on known assignment costs

ADP policy: use value function approximations for the value of drivers becoming 

available given drivers home base, hours served, etc

Assigning blood to demands: elective, non/elective, blood type substitution

Demand and supply for each time period are random variables

Myopic policy: assigns all blood possible

ADP policy: keeps some blood back based on value of starting with some blood



The basic idea

Outline algorithm

11www.biarri.com

Initialise             and initial state

For n = 1…N

Choose a sample path ωn

For t = 0…T

Solve

Let the action that achieves this minimum be 

Update a value function approximation:

Compute
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Practical Issues

That’s fine in theory, but will it work in practice
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The approach combines optimisation and simulation

The expectation calculation may be still be intractable

How do we choose initial values and an initial state?

What about states we don’t visit?

Will it converge to a useful answer, and how long will that take?

Some general tricks:

Separating the value function into linear components

Piecewise linearisation

Aggregation of the state space



Blood bank example

And now for a detailed example
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Random weekly demand and supply of blood of different types

Fixed number of weeks (or infinite horizon)

Demand split into different types of procedures:

Urgent or Elective (85:15)

Blood substitution allowed or not (50:50)

Known table of possible blood substitution

Blood stored for up to 6 weeks

Specified myopic value of using blood:

Filling urgent demand: 40

Filling elective demand: 20

Substituting blood: -10

Using O- blood as a substitute: 5



Blood bank example

Blood substitution
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Blood bank example

Decision making
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Myopic decisions

Assign blood to demand so as to maximise the value at each stage

Simple network flow model

The problem

Strongly favours using all blood

No incentive to keep some stock on hand to meet urgent demand in the next period

State, decision and outcome vectors all have large dimension 



Blood bank example

Decision making
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ADP approach:

xt represents the blood to demand assignments made at time t

Ct is the short term value of the assignments

The state St is the amount of each blood type in stock

How do we estimate the value function?

Based the amount of each blood type/age combination left after we make a decision

Separated by blood type/age

Then use a piecewise linearisation – easily incorporated into network model

Remaining problem – how do we estimate the slopes of the piecewise linearisation

The answer – dual variables
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Blood bank example

The algorithm for calculating the value function approximations
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Initialise piecewise linear approximations and blood levels

For n = 1 to N

Set level to be a vector of blood starting levels (blood type / age)

Simulate one week

Generate supply and demand

Calculate the assignment of blood to demand (use current value functions)

Roll forward unused blood

Use dual variables to update the piecewise linear approximations around level



Blood bank example

Updating the piecewise linearisation
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Two key parameters

Width of window to update

A function of n

Wider in earlier iterations

Smoothing parameter

Weight on this iteration

Smaller over time

Need to ensure values for each interval are monotonically decreasing

Multiple value functions are updated at each step

This is common when using dual variables in resource allocation problems



Blood bank example

Results
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5000 time interval simulation 

Myopic:

Average objective: 5777.97

Average unmet demand: 48.91

Average unmet urgent demand: 30.30

With value function approximations:

Average objective: 5981.34 (3.5% better)

Average unmet demand: 49.74

Average unmet urgent demand: 22.38



Blood Bank Example

Value Function Approximations
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Final Thoughts

ADP is still very much a black art

Very problem specific approaches required

Tuning of important parameters is itself a stochastic optimisation problem

Very few proofs of convergence

It’s fine in practice, but does it work in theory

However…

Very natural interpretation of the results

Easy to demonstrate when it does better than myopic (with statistical significance)

Relatively easy to implement, with similar data requirements as simulation
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Questions?
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Dr Michael Forbes
Optimisation Guru
michael.forbes@biarri.com


